It’s week two of #30SaltyDays! This week, we are focusing on potassium, or K+ for those of you that still remember high school chemistry.
Tweet this post to enter our FASTCHEW giveaway! “Feeling Fatigued? Four Ways Potassium Matters to Your Sports Performance: http://bit.ly/1SK0tyM via @SaltStick #30SaltyDays”
This post is part of our #30SaltyDays summer campaign, in which we hope to educate YOU about the benefits and science behind electrolytes. Follow the campaign with the hashtag #30SaltyDays on Facebook, Twitter, Instagram and the SaltStick blog. We’re offering our brand new product, SaltStick FASTCHEWS, as a GIVEAWAY for participants. More information here: http://bit.ly/1Rz0avu.
While most endurance athletes are aware of their need for potassium (raise your hand if you had a banana today…), you may not know why you need it. In this blog post, we’ll cover:
- How your body uses potassium to regulate blood pressure, nerve functioning and other important processes.
- Why endurance athletes should care about potassium.
- How to identify and manage a potassium deficiency
- How YOU can incorporate this knowledge into your daily nutrition.
How does the body use potassium?
Potassium is the primary electrolyte located inside the body’s cells (intracellular) and stored in muscle fibers along with glycogen. Like all electrolytes in our #30SaltyDays series, potassium has a variety of roles in the body:
Blood pressure: For the past 20 years, scientists have found that people with high blood pressure who don’t want to lower their salt intake can simply consume more potassium-containing foods (such as bananas, potatoes or berries). Why? Because the balance of the two minerals is what matters. In fact, Dutch researchers determined that a low potassium intake has the same impact on your blood pressure as high sodium consumption. Additionally, a 1997 study by the National Heart, Lung and Blood Institute found that volunteers who consumed 4,700 mg of potassium per day through a well-balanced diet that included lots of fruits and vegetables reduced their blood pressure in just two weeks. This study ultimately became the foundation for today’s DASH diet.
Muscle contraction: As we discussed in last week’s blog post, sodium and potassium ions operate through what’s called the “sodium-potassium pump.” Potassium passes through cell walls much more easily than sodium and naturally builds up inside cells. Sodium, on the other hand, is primarily stored outside the cell wall in the extracellular fluid (plasma). Recall from your undergrad biology class that nerves relay information through electric signals. Thus, the different concentrations of sodium and potassium inside and outside of the cells build up slight electric charges, which help your nerves send information and manage muscle contractions. This is one reason low electrolytes are sometimes thought to cause muscle cramps.
Fluid/nutrient regulation: This same sodium-potassium pump also contributes to fluid regulation. In nature, things naturally move from an area of high concentration to low concentration, and the imbalance of sodium and potassium causes these two ions to move in and out of cells, based on water content. As potassium ions transverse the cell walls, sugars, waste products, and nutrients pass with them, meaning potassium is also essential for transporting energy throughout the body.
Enzyme production: Potassium is also necessary for certain enzyme production, including adenosine triphosphate (or ATP, the prime source of energy for cells) and pyruvate kinase, an important enzyme involved in carbohydrate metabolism.
Should endurance athletes care about potassium?
Absolutely! It is nearly impossible to find a local race without trays of oranges and bananas. In addition to being great sources of simple sugars, these fruits are full of potassium. Some exercise physiologists theorize that the sodium-potassium pump may contribute to exercise-induced fatigue. Recall from above that the body naturally stores potassium inside cells and sodium outside in the extracellular fluid (plasma). However, studies of marathon runners (1970, Journal of Applied Physiology) have found that long exercise results in greater amounts of potassium outside the cells, which can contribute to cramping, bloating and general fatigue. The balance of sodium and potassium usually returns to normal about an hour after exercise in healthy adults.
For the technically-minded reader, here is a more in-depth explanation, via “Salt Science,” a helpful guide on our website regarding electrolyte supplementation: The electrochemical gradient of potassium between intracellular and extracellular space is essential for nerve function; in particular, potassium is needed to repolarize the cell membrane to a resting state after an action potential has passed. This means that the presence of potassium is critical to “reset” the nerve for the next activity. Decreased potassium levels in the extracellular space will cause hyperpolarization of the resting membrane potential. As a result, a greater than normal stimulus is required for depolarization of the membrane in order to initiate an action potential. Simply, this means that lack of potassium will slow down or halt nerve and muscle action.
What is potassium deficiency?
Potassium deficiency symptoms include nausea, slow reflexes, vomiting, muscle weakness, muscle spasms, cramping, and rapid heart rate.
Note that, similar to sodium intake, high blood pressure patients have to pay extra close attention to potassium. According to a University of Connecticut USATF advisory, potassium levels lost in sweat can be a concern for people in general and especially for people taking diuretics for high blood pressure. Diuretics cause excessive excretion of potassium, and running could result in hypokalemia (low potassium). Also, plain water intake or hyper-hydration will exacerbate losses of potassium by sending the excess fluid to the kidneys for excretion at the expense of potassium.
How should endurance athletes incorporate potassium into their daily diets?
The easiest way to get enough potassium is to eat lots of fruits and vegetables, which are full of potassium and many other vital nutrients and phytochemicals. There’s nothing special about the effectiveness of the DASH diet (mentioned above), which is commonly used to help patients reduce blood pressure. It’s composed of whole foods balanced across fruits, vegetables, whole grains and lean meats. Because of potassium’s abundance in natural foods, you’ll easily consume your 4,700 recommended mg per day.
Fruit, including bananas, watermelon, cantaloupe, peaches, and grapefruit, is especially full of potassium, so enjoy that slice of watermelon after your next run! Another great source is sweet potatoes, which make an excellent post- or pre-workout source of carbohydrates.
Outside of exercise, supplementation is probably not necessary, due to the abundance of potassium in natural foods. Replenishing lost potassium during and after exercise is important, but athletes should be aware that hyperkalemia (high serum potassium levels) can cause electrical impulse disturbance, irregular heartbeat, and possibly death. Individuals should never take potassium supplements in large doses (beyond normal supplementation) without the advice of a physician. Just be sure to eat a balanced diet and reduce your intake of processed foods. You’ll likely get more than enough potassium naturally.
Later this week, we’ll share some recipes to help you get optimal amounts of potassium! Stay tuned…